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Abstract. The optimization procedure of finite-time thermodynamics is extended in order 
to calculate the coefficient of performance of ideal refrigerators at maximum cooling power. 
For this purpose, the cycle time has to be altered somewhat to allow for the occurrence 
of adiabatic arms in the cycle. 

1. Introduction 

In recent years great interest has arisen in the branch of finite-time thermodynamics 
(Andresen 1983, Andresen et a1 1984, Callen 1985) which extends the usual reversible, 
infinitely slow thermodynamics to processes which are completed in a finite time, 
possibly in the presence of sources of irreversibility. Here the constraints arising from 
finite time, irreversibility, etc are conveniently modelled and a suitable functional e.g., 
power, efficiency or entropy production is optimized with respect to the parameters 
involved. Finite-time thermodynamics has been successfully applied to a large number 
of problems such as the analysis of heat engines of the endoreversible type (Curzon 
and Ahlborn 1975, Andresen et a1 1977a, Andresen et a1 1977b, Salamon et a1 1980, 
1982, Ondrechen et a1 1981, Salamon and Nitzan 1981, Rubin and Andresen 1982, 
Mozurkewich and Berry 1982, Ondrechen et a1 1983b, Hoffman et a1 1985, Callen 
1985, Leff 1987, Landsberg and Leff 1989), binary distillation processes (Andresen 
1983, Andresen et a1 1984), chemical reaction systems (Ondrechen et a1 1980 and 
1983a) separation processes (Brown et a1 1986) and the upper bound on terrestrial 
wind energy (Gordon and Zarmi 1989). 

The classic paper (Curzon and Ahlborn 1975) which initiated finite-time thermo- 
dynamics had discussed the important question of maximizing the power output of a 
finite-time, endoreversible Carnot engine by introducing temperature differences at the 
upper and lower isotherms. These authors wrote the cycle time as 

where t, and t, are the time-durations of the isothermal expansion and compression 
strokes, respectively, and y is a constant. Using (1) they demonstrated how to maximize 
the power of a Carnot engine and also found that the efficiency at maximum power 
output is well approximated by the formula 1 - ( T3/ T,)l’’’. However, no attempt in the 
literature has been made so far to apply this philosophy to refrigerators where one 
would like to maximize the cooling power R (i.e., the rate of extraction of heat per 
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cycle from the body to be cooled) so that the temperature of the body can achieve the 
desired lowest value as quickly as possible, and the aim of the present paper is to 
examine this task in detail. 

In section 2 below we present the equations of cooling power optimization for a 
refrigerator based on the Curzon-Ahlborn (1975) technique and find that the equations 
do not admit realistic roots for the unknown temperature differences. We, therefore, 
suggest that the expression for 7(cf (1)) has to be altered somewhat by also explicitly 
calculating the times spent on the adiabatic arms of the cycle and show that consistent 
results are thereby obtained (section 3) .  For the sake of completeness we demonstrate 
in the appendix that the modified-time concept also works successfully for engines 
where the power output has to be maximized. 

2. Curzon-Ahlborn technique applied to refrigerator 

Following closely the notation of Curzon and Ahlborn (1975) we denote the source 
temperature by Tl and the thermal conductance and the temperature difference at the 
upper isotherm by a and x, respectively. The corresponding quantities for the sink 
along with the lower isotherm are denoted by T 3 ,  P and y ,  respectively. It should be 
emphasized that the refrigeration cycle (figure l ( a ) )  moves in a sense opposite to that 
of engines (figure l ( b ) )  namely it absorbs heat Q3 at working temperature T 3 - y ,  
performs a work W on the same, and delivers heat Q, = Q3 + W at working temperature 
TI + x. Then 7 = y [  Q 1 / a x  + Q 3 / p y ]  and Q1/ Q 3  = ( TI + x) / (  T3 - y ) .  The physically 
allowed domains of x and y are 0 < x < 00 and 0 < y < T3.  

Now, we wish to maximize the cooling power R defined by 

I * 
V 

Figure 1. The Carnot cycle in the PV plane appropriate to ( a )  refrigerator and ( b )  engine. 
The starting point in either case is represented by the heavy dot. 
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Upon setting a R / a y  = 0, one obtains 

Since y must be less than T3 only the positive sign before the radical has to be taken 
here. Also, equating d R / d x  to zero yields 

which is impossible because all the factors appearing on the left-hand side of (4) are 
finite. Of course, this conclusion is inevitable in view of the fact that R is of the form 
A x / ( B x + D ) .  Hence the attempt to optimize the cooling power fails if we adopt the 
technique of Curzon and Ahlborn (1975). 

It should be stressed that since physically acceptable roots for x and y do not exist 
in the case of refrigeration, there is no need to calculate the second-order derivatives 
in order to ascertain whether R becomes a genuine maximum. The physical reason 
for the failure of the above-mentioned optimization procedure can be ascribed to the 
fact that the total cycle time (cf (1)) has been calculated only in terms of contributions 
from the isothermal arms (cf figure 1) ignoring the adiabatic arms completely. 

3. Modified time concept and refrigeration 

3.1. Formulation 

We suggest that the assumption behind ( l ) ,  namely that the sum of the heat absorption 
and rejection times is a fixed fraction y of the cycle time 7, is not strictly valid for a 
Carnot cycle because the adiabats and the isotherms have very different equations. To 
be precise, let the to-and-fro moving piston have a speed, i.e. the temporal rate of 
change of volume, U regarded as constant, neglecting the acceleration/deceleration at 
the ends of motion. This assumption is made for mathematical simplicity because a 
sinusoidal dependence of volume on the time would make the subsequent algebra 
much more complicated. Even physically the use of a piston with constant U can often 
improve the working of a machine as emphasized by Andresen et a1 (1984). 

Referring to figure l (a )  the times t3,  t 2 ,  t l  and t4 to go round the four branches of 
the refrigeration cycle are, by definition, 

t3=Q3/Py=(V3-  V 4 ) l U  

t , = Q1 / a x  = ( v, - v, )/ U 
f 2  = ( v3 - V2)/ U 

f 4  = ( v4 - V,)/ U. (5) 

Now we make use of the well known relations characteristic of the Carnot cycle namely 

Q l / Q 3  = ( + x ) / ( T 3 - y )  a 
v3/ v2 = v4/ = [( + ( T3 - y  )I‘ ( 6 )  

where C = C V / R ,  is the molar heat capacity at constant volume of the working 
substance in units of the gas constant R, .  Then, the above times on four arms can be 
summed to yield the total time as 

and a relation between x and y in the form 

Obviously, in contrast to ( 1  1, our 7 is not a simple multiple of t l  + t3 .  Furthermore, if 
x is regarded as the independent temperature difference then y gets fixed from (8). 

7 = 2 Q3[ 1 - ( VI / v2) a -‘ I /  [PY ( 1 - VI / v,) 1 

y = [ a x a - C - l ] / p  =[T3- T , / a ] / [ l + p a C / a ] .  (8) 

( 7 )  
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Our desired expression for cooling power written conveniently in terms of ‘a ’  reads 

Q3 a ( - v2) ( T3 - ) R = - =  
7 2[ uc - VI/ v2 + a / p  - ( a  v,/p v2)a-C] * 

(9) 

Keeping a, p, VI/ V,, TI, T3 and C as fixed we differentiate R with respect to x, i.e. 
equivalently with respect to ‘a ’  and equate the result to zero, getting the optimization 
condition 

(T , la2) [aC - V , / V 2 + a / P  -(av1/pv2)a-c1 
- C ( T3 - TI/ U )  [ U c-l + ( VI / p V2) = 0. (10) 

This algebraic equation does not possess an analytical solution for ‘a’ but can be 
readily solved numerically. The fact that we do get a genuine maximum for the cooling 
power R will become apparent in the next sub-section. Knowing a the coefficient of 
performance w is obtained from 

w = l / (a  - 1). (11) 

3.2. Numerical results 

It should be emphasized that our theory applies to a four-arm Carnot cycle employing 
a non-latent-heat-type refrigerant which does not condense during the process. The 
best example is provided by air as the refrigerant (Sparks and Dulio 1959) which was 
used about a century ago for cold storage shipments of meats with the resulting 
coefficient of performance rarely exceeding 0.75. Recent advance in technology has 
been able to increase the value of the coefficient of performance to about 1.75 (Parker 
1981) by using a cycle which is not exactly Carnot’s. In order to illustrate our theory 
applied to four-arm air refrigeration we take (Vargaftik 1975) 

and study the following variations, after fixing the optimized value of a from (10) 
always. Since the compression ratio is of the order of 10-20 we take V2/ VI = 16 and 
plot (cf figure 2(a))  w against a l p  over a wide range of the heat conductance ratio. 
It is observed that w increases gradually with decreasing a lp .  In figure 2(b) we plot 
w against V2/ VI for fixed a l p  = 2 and find that w slowly falls as V2/ VI becomes 
higher. The fact that we get a genuine maximum is obvious from figure 3 where the 
function R / a  is plotted against ‘a’  for the typical choice V2/ VI = 16 and a / p  = 2. The 
maximum corresponds to a = 1.79, x = 121 K and y = 31 K and leads to 

where wc = 1/( T,/ T3 - 1) is the standard Carnot performance factor and w,bs is the 
value observed in practice (Sparks and Dulio 1959, Parker 1981). It is interesting to 
note that our w agrees fairly well with mobs. However, for machines employing a 
non-latent-type refrigerant (namely air) published practical values of x and y are not 
available for direct comparison?. For the sake of completeness an application of our 
approach to engines is discussed in the appendix. 

t The comparison between our theory and actual practice both for refrigerators and engines (see appendix) 
is not straightforward for several reasons. The cycle shapes in practice are not Carnot-like as the working 
fluid condenses on a portion of the cycle. In other words, the temperature parameters in modern machines 
are largely affected by the latent heat which is released/absorbed in contrast to our model which applies 
to non-latent-type gas. Moreover, various thermodynamic parameters of commercial machines are not based 
on the m optimization of the kind considered here. Nevertheless, to quote a typical practical example: 
the freon based refrigerator has T , ,  T3,  x and y as 316, 275, 30 and 9 K, (Dossat 1961). Similarly, a steam 
engine plant has the corresponding values T, = 457, T3 = 300, x = 132 and y = 27 K (Croft 1922). 

T1=316K T3 = 275 K C = 2.558 (12) 

w = 1.27 W C  = 6.7 mobs = 0.75-1.75 (13) 
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Figure 2. Plot of the coefficient of performance w against ( a )  the heat conductance ratio 
a / P  for fixed VJ  VI = 16 and (6) the expansion ratio VJ  VI at fixed a l p  = 2. 
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Figure 3. Plot of the ratio R i a  for refrigerator against a keeping V2/ VI = 16 and a/@ = 2. 
The peak is located at a = 1.79 which corresponds to w = 1.27. 

Before ending we wish to make some pertinent remarks. One may wonder why the 
specific choice a / P  = 2 was made in connection with refrigerator (cf figure 3) and 
engine (cf figure 5) though the results of w or are insensitive to it. Since the heat 
transferred along the upper isotherm is always larger than that along lower isotherm 
the corresponding conductances should also bear this pattern. Next, with a slight 
modification of the concept of cycle time we have extended successfully the classic 
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work of Curzon and Ahlborn (1975) to refrigeration also without disturbing the 
requirement that the temperature difference x at the upper isotherm is unbounded. 
Finally, our plea is that the parameters predicted by finite-time thermodynamics should 
be adopted by commercial manufacturers of engines and refrigerators so as to improve 
their performance characteristics. It is hoped that the present work will serve as a base 
for more elaborate calculations involving realistic cycles and general working 
substances. 
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Appendix. Modified time concept for engines 

In the engine heat Q1 is absorbed at working temperature TI -x, a part W of it gets 
converted into work, and the remainder Q3 = Q1 - W is delivered at working tem- 
perature T,+y as shown in figure l (6) .  The calculation of the cycle time proceeds in 
a manner exactly analogous to (7) except that the variable ‘a’ is now defined as 

a = ( - ( T3 + y ) .  (Al l  

Furthermore, the output power P reads 

The power maximization condition namely, a P / d a  = 0 yields 

g ( a ) = [ T 3 -  T 1 / a 2 ] [ a C  - v , / v , + a / p  - (av1/pV*)a- ‘]  

- C[ T,(u - I ) +  Tl( l /a  - l ) ] [ a ‘ - ’ + ( a V ~ / p V ~ ) ~ - ~ - ’ ]  

= O  (A3 1 
the root of which that is smaller than TI/ T3 is chosen for this purpose. The efficiency 
is, of course, given by 

7 = 1 - l/a. (A41 

For numerical illustration we choose the example of West Turrock (UK) Coal Fired 
Steam Plant (Spalding and Cole 1966) considered also by Curzon and Ahlborn (1975) 
for which data on specific heat (Vargaftik 1975) of the working substance are available. 
Taking 

TI = 838 K T3 = 298 K C = 3.767 (AS) 
we depict in figure 4(a)  the dependence of r] on a / P  for fixed V2/ VI  = 16. Figure 4(6) 
displays the variation of r] with V2/ VI keeping a / P  = 2. Once again, the dependences 
of r] on the plotted parameters are very weak. The fact that the output power P becomes 
a genuine maximum is evident from the plot of P / a  against ‘a ’  in figure 5 corresponding 
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Figure 4. The efficiency 7 of an engine plotted against ( a  a / @  for fixed V J  V I  = 16 and 
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Figure 5. Plot of the ratio P / a  against a keeping V2/ V ,  = 16 and a / @  = 2 for an engine. 
The peak is located at a = 1.32 which corresponds to 7 = 24%. 

to the realistic choice VJ  V, = 16 and a / P  = 2. The peak value corresponds to a = 1.32, 
x = 261 K, y = 139 K and leads to 

q = 24% v , b 5  = 36% qc = 64% v C A  = 36% (A6) 
where the subscripts obs, C and CA refer to the observed, Carnot, and Curzon-Ahlborn 
values, respectively. Once again 7 is fairly close to 7,bs but the comparison between 
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the theoretical and practical values of x and y is not straightforward as mentioned in 
the footnote of subsection 3.2. 
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